On Some Extended Block Krylov Based Methods for Large Scale Nonsymmetric Stein Matrix Equations
نویسندگان
چکیده
In the present paper, we consider the large scale Stein matrix equation with a low-rank constant term AXB − X + EFT = 0. These matrix equations appear in many applications in discrete-time control problems, filtering and image restoration and others. The proposed methods are based on projection onto the extended block Krylov subspace with a Galerkin approach (GA) or with the minimization of the norm of the residual. We give some results on the residual and error norms and report some numerical experiments.
منابع مشابه
Approximate solutions to large nonsymmetric differential Riccati problems
In the present paper, we consider large scale nonsymmetric differential matrix Riccati equations with low rank right hand sides. These matrix equations appear in many applications such as control theory, transport theory, applied probability and others. We show how to apply Krylov-type methods such as the extended block Arnoldi algorithm to get low rank approximate solutions. The initial proble...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملApproximate solutions to large Stein matrix equations
In the present paper, we propose numerical methods for solving the Stein equation AXC − X − D = 0 where the matrix A is large and sparse. Such problems appear in discrete-time control problems, filtering and image restoration. We consider the case where the matrix D is of full rank and the case where D is factored as a product of two matrices. The proposed methods are Krylov subspace methods ba...
متن کاملBlock Arnoldi-based methods for large scale discrete-time algebraic Riccati equations
Algebraic Riccati equations (discrete-time or continuous-time) play a fundamental role in many problems in control theory. They arise in linear-quadratic regulator problems, H ∞ or H 2-control, model reduction problems and many others. In this talk we propose numerical methods for large discrete-time algebraic Riccati equations (DARE). We present block projection methods that allow us to comput...
متن کاملLow - Rank Solution Methods for Large - Scale Linear Matrix Equations
LOW-RANK SOLUTION METHODS FOR LARGE-SCALE LINEAR MATRIX EQUATIONS Stephen D. Shank DOCTOR OF PHILOSOPHY Temple University, May, 2014 Professor Daniel B. Szyld, Chair We consider low-rank solution methods for certain classes of large-scale linear matrix equations. Our aim is to adapt existing low-rank solution methods based on standard, extended and rational Krylov subspaces to solve equations w...
متن کامل